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ABSTRACT

Utilizing Universal Probability of Expression Code (UPC)
to Identify Deregulated Pathways in Cancer Samples

Michelle R. Withers
Department of Statistics, BYU

Master of Science

Understanding the role of deregulated biological pathways in cancer samples has the
potential to improve cancer treatment, making it more effective by selecting treatments that
reverse the biological cause of the cancer. One of the challenges with pathway analysis is
identifying a deregulated pathway in a given sample. This project develops the Universal
Probability of Expression Code (UPC), a profile of a single deregulated biological path-
way, and projects it into a cancer cell to determine if it is present. One of the benefits of
this method is that rather than use information from a single over-expressed gene, it pro-
vides a profile of multiple genes, which has been shown by Sjoblom et al. (2006) and Wood
et al. (2007) to be more effective. The UPC uses a novel normalization and summarization
approach to characterize a deregulated pathway using only data from the array (Mixture
model-based analysis of expression arrays, MMAX), making it applicable to all microarray
platforms, unlike other methods. When compared to both Affymetrix’s PMA calls (Hubbell,
Liu, and Mei 2002) and Barcoding (Zilliox and Irizarry 2007), it performs comparably.

Keywords: oncogenic pathways, microarray normalization
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chapter 1

INTRODUCTION

According to the American Cancer Society, an estimated 1,529,560 new cancer cases will be

diagnosed in the United States in 2010. Cancer is a broad term to describe a widespread,

complex, and diverse problem. It is commonly known that cancer is caused by harmful

cells that proliferate throughout the body. What is less commonly known is that there is

no one cause for all types of cancer. Within a specific cancer type, there are subtypes, and

individual cases within each subtype may have different biological causes. Currently, some

treatments respond better to certain subtypes because they have been designed to reverse the

biological cause of the cancer. For example, in breast cancer, patients who have a subtype

characterized by ER+ respond well to tamoxifen, but for patients with ER- the harmful

side effects outweigh the benefit from the treatment. If the contributing biological factors in

a specific cancer could be determined, the patient could initially receive the most effective

treatment, increasing the chance of remission. The purpose of this paper is to describe a

method that uses microarray data from a single deregulated oncogenic pathway to determine

if it is present in a cancer sample. This method is one step in the process of achieving more

effective, more personalized treatments.

Before describing the method, a biological background to pathways and microarrays

must be established. First, biological pathways will be defined, followed by a description of

what happens when the a pathway is deregulated. Next, oncogenic pathways and their role

in cancer development will be addressed. One specific oncogenic pathway used to demon-

strate this method, the RAS pathway, will then be addressed, followed by a description of

microarrays and their application to cancer research. Finally, after the background has been

established, a brief overview of the UPC method will be described.
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Biological Pathways

A biological pathway is a series of actions among molecules that lead to a certain product

or change in a cell, much like a car traveling from point A to point B, with a series of

stoplights and turns in between (Figure 1.1). Biological pathways range from processes at

the molecular level, such as degrading RNA and producing proteins, and those at the cellular

level, like apoptosis (cell death), to processes that affect the whole body, such as regulating

body temperature and hemostasis.

When a pathway is deregulated at least one step in the process is altered, causing

a chain reaction that can have detrimental effects on the body. Rather than the pathway

going from point A to point B, result C is observed (Figure 1.1). For example, hemoglobin

is a protein responsible for binding to oxygen, allowing the air we breathe to enter the blood

stream. However, if there is one mutation on one chromosome, one protein is misshapen

and can cause sickle cell anemia. More generally, the cause of a deregulated pathway goes

back to some error in the DNA. Any given deregulated pathway can cause a multitude of

problems, including a different protein being produced or a gene being “turned on” when

it should be “turned off”. Whatever the specific changes caused by a deregulated pathway,

the ramifications are harmful to the body.

Oncogenic Pathways

One of the critical kinds of pathways in cancer research are oncogenic pathways. Oncogenic

pathways promote cell differentiation (reproduction). When an oncogenic pathway is dereg-

ulated, harmful cells remain alive or healthy cells do not divide. Many cases of cancer are

caused by deregulated oncogenic pathways; cancerous cells do not experience apoptosis (cell

death). Rather, they stay alive and continue to reproduce, causing the growth and spreading

of cancer.

2
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Figure 1.1: If a biological pathway is deregulated, it will go a different direction, from A to
C, rather than rather than going on its intended route, from A to B. Deregulated biological
pathways cause problems in the body, the most extreme cases being life threatening diseases
including sickle cell anemia and cancer.

The RAS pathway is one example of an oncogenic pathway that is responsible for

transmitting signals to the cell, among other things. A signal is sent from outside the

cell, received by the RAS protein, and passed from protein to protein to regulate lipid

metabolism, DNA synthesis, and cytoskeletal organization, which are processes necessary

for cell differentiation. The amount of the RAS protein is carefully managed; however,

if there is a single nucleotide mutation, the RAS protein could possibly signal to the cell

to differentiate unchecked. This is a significant problem in cancerous cells. In fact, the

deregulated RAS pathway is present in 20% of all tumors, 90% of pancreatic cancers, and

35% of lung cancers. Certain drugs have been shown effective in treating the RAS mutation,

including the inhibitor of farnesyltransferase which blocks the maturation of RAS (Goodsell

1999).

Microarrays

One of the challenges in pathway analysis is quantifying the active pathways. Determining

the specific gene mutations causing the deregulated pathway is difficult with current tech-

nology. However, the overall changes in gene expression caused by the deregulated pathway

can be observed. For example, if a deregulated pathway causes a different protein to be

3
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made, it would be characterized by an increase in the expression of that specific protein.

Little is known about the specific genetic changes resulting from the deregulated pathways,

but by comparing control cells to cells where a certain pathway has been over-expressed, the

genes affected by the deregulated pathway can be determined. The genes’ expression values

are measurable using microarrays.

Microarrays are a genetic tool that calculate measurements on thousands of RNA

strands simultaneously, indirectly allowing us to access gene expression values. RNA is

purified from a tissue sample and bound to fluorescent dye. One-channel arrays use only

one color of fluorescent dye while two-channel arrays use two dyes. The RNA strands are

then placed onto a small chip, and the concentration of the dye, an indication of the gene

expression, is measured. In a given cell, there will be genes that are active (expressed) and

background genes that are inactive (unexpressed).

While microarrays are useful, they are not perfect. Microarrays only yield the rel-

ative expression levels and therefore cannot determine if a given the gene is expressed or

unexpressed because it does not have a “control”. Additionally, microarray data are noisy

due to known and unknown biases, including the nucleotide composition of the gene and

natural variation.

In order to use the microarray data in pathway analysis, normalization that removes

known biases must be applied to the data. The MMAX normalization will be presented,

justified, and applied to the deregulated RAS pathways and control samples. Once the

data are normalized using MMAX, they are summarized to determine the probability that

each gene is expressed. Then the steps to compute the UPC, the profile of the deregulated

pathway, are outlined. This portion yields a probability that a single pathway is activated.

The UPC method is described and illustrated using the RAS pathway and 51 lung cancer

samples. Overall, 45 cancer samples were classified as having a deregulated RAS pathway,

2 were marginal, and 4 did not have a deregulated RAS pathway. The UPC method was

applied to the RAS pathway as a demonstration but can be applied to any single oncogenic

4
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pathway. Hopefully, the UPC method will contribute to the growth and development of

targeted cancer treatment.
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chapter 2

LITERATURE REVIEW

Cancer pathway identification using microarrays requires two major tiers of analysis. This

section will provide an overview of the literature that addresses the main components of

the analysis: (1) one-channel microarray normalization and summarization and (2) pathway

profiling and signature analysis.

2.1 Normalization and Summarization of One-Channel Microarrays

Error and bias in microarray data from the DNA composition of the probe and batch effects

necessitate the normalization of the data before summarization and analysis. One of the first

methods of one-channel normalization was global median normalization (Edwards 2003).

This method is not considered rigorous enough compared to the newer methods, including

quantile normalization (Bolstad et al. 2003). Another normalization method that performs

well for tiling arrays in ChIP-chip experiments is the model-based approach presented by

Johnson et al. (2006). Four major methods of microarray correction, normalization, and

summarization exist: Microarray Analysis Suite 5.0 (Hubbell et al. 2002); Model Based

Expression Index, MBEI (Li and Wong 2001); Robust Multichip Analysis, RMA (Irizarry

et al. 2003); and Significance Analysis of Microarrays, SAM (Tusher, Tibshirani, and Chu

2001). Barcoding (Zilliox and Irizarry 2007) and a mixture model approach (Parmigiani,

Garrett, Anbazhagan, and Gabrielson 2002) will also be presented.

Global Median Normalization

Global median normalization, mentioned by Edwards (2003), was one of the first approaches

to normalize one-channel arrays. This method subtracts the background intensity from the
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signal intensity,

ips = isps − ibps, (2.1)

where isps represents the signal intensity and ibps is the background intensity. One of the dis-

advantages of this method is that it allows a negative intensity, preventing the necessary log

transformation. The negative values are treated as missing, removing valuable information

and introducing bias. Edwards (2003) presents a method that improves global normaliza-

tion by accounting for negative and very small intensity values; however, global median

normalization is still considered an inferior method.

Quantile Normalization

The main objective of quantile normalization, presented by Bolstad, Irizarry, Astrand, and

Speed (2003), is to transform the values on each array so the distributions are identical. In

order to perform this normalization, the following algorithm is used:

1. Given n arrays of length p, form X of dimension p× n where each expression array is

a column;

2. Sort each column of X to give Xsort;

3. Take the means across rows of Xsort and assign this mean to each element in the row

to get X ′sort;

4. Get Xnormalized by rearranging each column of X ′sort to have the same ordering as

original X.

Bolstad et al. (2003) concedes that one of the major limitations of this method is that it

may misrepresent the values in the tails. Generally, in practice, this has been problematic

because genes that are highly expressed are usually of great interest. Another disadvantage

to this method is that it does not account for the bias due to the nucleotide composition of

the probe.

8
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Model-Based Normalization

Johnson et al. (2006) present a model-based approach for normalizing tiling arrays. The MAT

model for the log transformed expression value, Ym ∼ N(Xθm, σ
2
m), is shown in Equation

2.2.

xiθm = αmniT +
25∑
j=1

∑
k∈{A,C,G}

βjkmIijk +
∑

l∈{A,C,G,T}

γlmn
2
ik, (2.2)

where nik is the nucleotide k count in probe i, αm is the baseline value based on the number

of T ’s on the probe, Iijk is an indicator function such that Iijk = 1 if the nucleotide at

position j is k in probe i, βjkm is the effect of each nucleotide k (except T which is already

modeled in α) at each position j, and γlm is the effect of nucleotide count squared. Unlike

the methods previously mentioned, this model removes bias by accounting for the probe

composition. While Johnson et al. (2006) presented the method only for tiling arrays,

Kapur, Xing, Ouyang, and Wong (2007) extended this model to Exon arrays, showing its

superiority to the Affymetrix GC bin background model.

Microarray Analysis Suite 5.0 (Mas5)

The algorithm used by Affymetrix computes the signal in the following algorithm,

signal = Tukey Biweight(log(PMj − CTi)), (2.3)

where CTi is a function of the MM probes. The discriminant score, Ri = PMi−MMi

PMi+MMi
, is

then computed for each probe. Once these values are computed, the Wilcoxon Signed Rank

Test is used to calculate the p-value for each probe pair. The p-value is then compared to

pre-defined significance levels, described below:

• Present if p-value < α1

• Marginal if α1 ≤ p-value < α2

• Absent if α2 ≤ p-value.

9
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The defaults for α1 and α2 are 0.04 and 0.06, respectively. This summarization is common,

especially among biologists who rely on the commercial processing performed by Affymetrix.

One difficulty with this method is deciding whether to include marginal genes as expressed

or unexpressed (Hubbell et al. 2002).

Model Based Expression Index (MBEI)

Li and Wong (2001) take a model based approach, beginning with a non-linear baseline array

normalization. Next, they assume PM-MM for each individual probe response follows the

model,

yij = PMij −MMij = θiφj + εij, (2.4)

where θi is the expression index in chip i, and j indicates the probe pair. In order for the

model to be estimable, the constraint
∑
φ2
j = J , the number of probes, is imposed. The

parameters are estimated by iterating between φ and θ. This model allows for a straight-

forward way to identify the outlier probes and arrays. Once the outliers are removed, the

probes within each probeset are then summarized using the model,

log2 (yij) = βj + αi + εij, (2.5)

where αi is the probe effect and βj is the log2 transformed expression values. A separate

model is fit for each probeset.

Robust Multi-array Average (RMA)

Irizarry et al. (2003) also mention a way to normalize one channel Affymetrix GeneChip R©

arrays. After extensive data exploration, they developed robust multi-array average (RMA),

a model that corrects for the background noise, normalizes using quantile normalization

(Bolstad et al. 2003), and fits the linear model to the normalized, log2 transformed intensities.

The algorithm is outlined in more detail below.

10
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1. Model each intensity (PM) using PMijn = bgijn + sijn, where bgijn is the background

in the ith array, and sijn is the intensity signal for the ith array, jth probe pair num-

ber, and nth probe set. Assuming sijn is exponentially distributed and bgijn is nor-

mally distributed, calculate B(PMijn) = E(sijn|PMijn), and impose the restriction

B(PMijn) > 0.

2. Normalize data using quantile normalization

3. Apply a log2 transformation to the now normalized data

4. Fit the log2 transformed, normalized, background-adjusted values using the additive

model:

Yijn = µin + αjn + εijn (2.6)

where Y is the transformed, background-corrected values, αj is the probe affinity effect,

µi is the log scale expression for the ith array, and εijn is the error. Note
∑

j αj = 0

and εijn are independently and identically distributed with mean 0.

5. In order to minimize the effect of outlier probes, use median polish or another robust

procedure to estimate parameters.

6. Use the estimates of µi as the log2 measure of expression, referred to as the RMA.

RMA performance is comparable to MBEI performance but is generally considered better

and is more widely used in practice.

Significance Analysis of Microarrays (SAM)

SAM operates under the assumption that each gene has a different amount of variation

(Tusher et al. 2001). Each gene is assigned a score based on the relative values

d(i) =
x̄I(i)− x̄U(i)

s(i) + s0

, (2.7)

11
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where x̄I(i) and x̄U(i) are the average levels for the ith gene in states I and U , s(i) is

the standard deviation of repeated expression measurements, and s0 is a small positive

constant that minimizes the coefficient of variation. The d(i) are then ranked based on

their magnitude, and a threshold, ∆ = 1.2, is selected. The values are plotted on a normal

plot, and lines are drawn ∆ units above and below the observed = expected line. Those

observations above and below the threshold lines are deemed significant. This method is

superior to both pairwise fold change and fold change methods, and it compensates for the

False discovery rate (FDR) using a permutation-based test.

Mixture Model Analysis

The framework established by Parmigiani, Garrett, Anbazhagan, and Gabrielson (2002)

assumes the microarray data come from a three component mixture model (Figure 2.1).

Genes that are under expressed and over expressed, the lowest and highest of the three

components, are uniformly distributed, and genes that are normally expressed are normally

distributed. Each component has its corresponding parameters which are estimated using

Bayesian hierarchical analysis. This approach yields the probability that a given expression

value is from a distribution. For a given gene, if the probability is largest for the under-

expressed, it is assigned −1. Similarly, those genes from the normally-expressed and over-

expressed genes are assigned 0 and 1, respectively. The microarray summarization presented

in this paper has a useful application to signature analysis, which will be discussed later.

One disadvantage to this method is that it does not account for the probe bias, both from

the DNA makeup and from dead probes.

Barcoding

Zilliox and Irizarry (2007) introduce a novel method to determine if a gene is expressed

or unexpressed. Using data from previous microarray experiments in the GEO database,

information on the behavior of certain genes was obtained. More specifically, the distribution

12
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Figure 2.1: The three component mixture model used by Parmigiani et al. (2002) has three
distributions, two uniform and one normal. For any given expression value, the probability
it belongs to each distribution can be found.

of each gene was computed. For each gene, a cutoff value was selected based its distribution

(Figure 2.2). If the probe expression was above the cutoff, it was labeled “on” and assigned

a 1, and if it was below the cutoff, it was assigned a 0. For a given tissue, they compiled the

individual codes to create a barcode. This has interesting applications to pathway analysis

that will be mentioned later. Zilliox and Irizarry (2007) have extended their method to select

the cutoff based on statistical methods rather than select an arbitrary value. However, their

results have yet to be published.

Initially, it appears a binary classification would result in the loss of valuable infor-

mation. However, Tuna and Niranjan (2009) justify the reduction of measurement precision

to the binary level, showing that a binary reduction is essentially equivalent to using the

expression levels. Their argument is supported by their evidence that information can be

recovered using specific higher dimensional binary clustering algorithms. Other research

groups have implemented the barcoding approach, supporting it as a powerful method for

gene expression. Dudley, Tibshirani, Deshpande, and Butte (2009) even applied it across

microarrays from different labs and tissues. However, barcoding requires the combination

13
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of vast data sets, and while there are publicly available databases of data, it is a tedious

process to compile the expression distributions for each gene. Hence, the method only works

for a limited set of microarray platforms. Additionally, the growth of custom designed arrays

limits the application of this method to many experiments.
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Figure 2.2: This density plot is an example of a probe distribution used to barcode microar-
ray data (Zilliox and Irizarry 2007). Each gene on the array has its own distribution based on
previous experiments from GEO. A cutoff value is selected based on the distribution of each
gene, and those genes with values above the threshold are deemed “expressed”. Expressed
and unexpressed genes are assigned 1 and 0, respectively.

2.2 Pathway Signature Analysis

In order to quantify what is occurring in a cell, microarray data measures thousands of

probes. Naturally, with so many contributing genes, an apt way to describe the activity

in the cell is to use the measurements from multiple genes rather than one single summary

statistic. This measure is called a gene signature of profile. Profiling has been shown to

be more effective than simply looking at one gene (Sjoblom et al. 2006; Wood et al. 2007).

While there are different methods of gene selection, profiling is a standard procedure in

cancer research. In fact, gene profiles of cancer samples are commonly used both to identify

new subtypes of cancer and to diagnose new cancer samples. Some of the first studies to use

14
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this technology include Bittner et al. (2002) and Alizadeh et al. (2002). Since then, the use of

profiles has become commonplace. More current studies using profiling include an overview

of breast cancer profiling (Geyer and Reis-Filho 2009) and lung cancer profiling (Boutros

et al. 2009). These studies rely on cancer samples to create profiles. While this helps identify

similarities, the effects of the cancer are confounded with the biological change that caused

the cancer. In order to separate these two effects, a few studies have used deregulated

oncogenic pathway profiles and projected them into cancer samples to determine the cause

of the cancer. The first landmark study to use oncogenic pathways was Ferrando et al.

(2002). Two additional studies that used separate data from deregulated pathways, Bild

et al. (2006) and Chang et al. (2009), are also summarized below. For both types of profiles,

the adaptation of barcoding (Zilliox and Irizarry 2007) to pathway analysis and the marginal

profiles presented by Parmigiani et al. (2002) are useful approaches. Both methods allow

for the projection of a new cancer sample into a profile to determine the probability that a

given sample is a certain subtype or contains a deregulated pathway.

Cancer Sample Profiling

Bittner et al. (2002) used three different clustering approaches to classify 31 cutaneous

melanoma tumors, and Alizadeh et al. (2002) used hierarchical clustering to classify non-

Hodgkin’s lymphoma. Both groups found the microarray classification better than histolog-

ical classification.

Recently, Geyer and Reis-Filho (2009) published a literature review of recent studies

concerning breast cancer signature profiles. The paper summarizes the work of more than

ten research groups, each who have developed a unique gene signature to determine the

optimal prognosis. The signatures range from 21 to 186 genes. While these signatures

may prove to be helpful, one major drawback is the lack of consistency between signatures.

When subsets of the signatures were combined in a model, they did not perform any better

than the individual signatures did on their own, perhaps because of a lack of sophisticated
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statistical methods. Boutros et al. (2009) found a gene signature of only 6 genes to identify

non-small-cell lung cancer using a permutation approach. They also justified the existence

of many unique signatures to classify the same type of cancer.

Profiling, combined with clinical information, has been utilized in clinical situations

successfully to improve diagnosis and prognosis. Winstead (2008) is one example of the

successful implementation of this method. The model they developed uses both clinical and

genetic markers from bronchoscopy to predict early stage lung cancer, making it much less

invasive than the previous methods. Up to that point, there was great difficulty identifying

early stage lung cancer.

Deregulated Oncogenic Pathway Profiling

One of the landmark studies in this field, Ferrando et al. (2002), took samples from patients

with T-cell acute lymphoblastic leukemia. Using hierarchical clustering, they were able to

identify a critical pathway in the development of a subtype of the cancer.

Using cancer cells to quantify cancer profiles is limited in its ability to identify what

is biologically causing the cancer, thus hindering the development of targeted treatments.

However, quantifying a known biological pathway and determining if it is contributing to

a cancer sample provides a way to pinpoint a more effective treatment. Bild et al. (2006)

take this approach. Certain pathways, including the RAS pathway, were amplified and put

onto a microarray and compared to the control cells. The signature was calculated using

principal components. Then, breast cancer samples were compared to the signature to see

which had a specific pathway deregulated. Using hierarchical clustering, they also developed

a profile that combined the signatures from known multiple pathways and had more success

than the individual pathways. A more recent paper, Chang et al. (2009), focused on how

to determine if multiple pathways are deregulated using Bayesian factor analysis. In this

method, X is the matrix of the gene expression values (n×m); m is number of samples, n is

number of genes. X = AY +E, where A is a sparsely defined matrix indicating which genes
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are in the signature (n×k, k is number of signatures) and the defining weights between gene

signature pairs, and Y is a k ×m matrix of of the scores of signatures across data set. E is

the error. According to the paper, k is estimated “statistically”, and the number of genes in

a signature is allowed to vary. The algorithm iterates through the factor decomposition and

a step that searches for other useful genes. This iteration yields a set of genes with estimated

weights. Then the resulting weights are applied to new sample of expression values (this is

the score): if the score is high, the activation level is high; if the score is low, the level is low.

Profile Projection

As mentioned before, Parmigiani et al. (2002) published a unique profile for multiple genes

based on expression, using −1, 0, or 1 for low, normal, and high expression values, respec-

tively. In order to find the most likely profile for a given gene, g, they found three quantities:

P (G = g|low), P (G = g|normal), and P (G = g|high). These probabilities were used in cal-

culating the marginal profiles. For example, if we were developing a three gene signature,

the marginal profiles would be:

Profile ID Gene 1 Gene 2 Gene 3

1 1 1 1

2 0 1 1

3 -1 1 1

4 1 0 1

5 0 0 1

6 -1 0 1

...
...

...
...

25 1 -1 -1

26 0 -1 -1

27 -1 -1 -1

17



www.manaraa.com

Because the genes are assumed to be independent, the joint probability for a given

profile is the product of the probability for each gene. From this, it is easy to find the profile

with the highest probability. Additionally, the probability that a given cancer sample has a

specific gene signature can be obtained.

The barcoding method developed by Zilliox and Irizarry (2007) can also be applied

to signatures. As mentioned before, each probe is assigned a 0 or 1 based on its expression

level. Then, a profile of 0s and 1s, the barcode, can be created from the selected genes.
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chapter 3

METHODS

Now that the literature has been summarized for this specific area of research, a method

will now be presented to determine if a single deregulated pathway is active in a given

cancer sample using a novel normalization method called Mixture Model Based Analysis

of Expression Model (MMAX) and the pathway’s genetic signature called the Universal

Probability of expression Code (UPC). More specifically, Determining the probability that

a pathway is expressed is a three step process:

1. First, the microarray data from the activated pathway are normalized and summarized.

This will be accomplished using the Mixture Model Based Analysis of Expression

Arrays (MMAX) normalization, which is presented and validated. This method will

output the probability of expression for each gene.

2. Second, the UPC is calculated for an active pathway. The UPC will quantify the active

pathway by selecting genes that are the most different between the activated samples

and the control samples.

3. Third, the pathway is projected into a new cell to determine if it contributes to the

cancer sample. In other words, the UPC from the active pathway will be compared to

the cancer sample.

After each step is presented in more detail, the entire method will be demonstrated using

the RAS pathway and 51 cancer samples.

19



www.manaraa.com

3.1 Data Normalization and Summarization

Mixture Model Based Analysis of Expression Model (MMAX)

There are many sources of error in microarray data. Additionally, in a given sample, there

will be many genes that are functioning at their normal level. These genes will contribute

to the background noise, making it hard to determine which genes are expressed beyond

the background value. The values obtained from the array for these expressed genes are the

combined effects of the background and signal. The ultimate goal of MMAX is to remove

the background noise, leaving only the quantity of interest: the expressed signal. With this

in mind, MMAX begins with the assumption that the log of the expression values come from

a two-component mixture model. The components represent the background and expressed

(background + signal) distributions. More formally, we assume the log of the microarray

data follow the following distribution:

Y = ∆YE + (1−∆)YB (3.1)

where the ∆ ∼ Bernoulli(π), which implies Pr(∆ = 1) = π = P (Yi = expressed). Addition-

ally, each individual component follows the MAT distribution Equation 2.2: YE ∼ N(xβ1, σ
2
1)

and similarly, YB ∼ N(xβ2, σ
2
2) (Johnson et al. 2006).

The standard approach for maximum likelihood estimation is to take the complete

log likelihood and maximize the parameters, Θ, with respect to the complete data, T , y and

∆. However, ∆ is unobserved, necessitating the use of the EM algorithm. This algorithm is

commonly used in problems with unobserved data, Z, and problems with difficult maximum

likelihood computations. Rather than impute unobserved data, it integrates over the missing

data. More specifically, it maximizes over Q, the expected value of the of the complete data

log likelihood. Mathematically, Q(Θ; Θ̂(j)) = E[`0(Θ′;T )|Θ̂(j)], where T is the combined

data (observed and unobserved), Θ̂j−1 is the most current estimate of Θ, and j indicates the

iteration number.
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Overall, the EM algorithm has two basic steps: Expectation (E) and Maximization

(M). The two steps iterate until convergence. The algorithm, adapted from the general form

in Hastie et al. (2001), is outlined below.

1. Select initial values Θ̂0 for Θ = (π, β1, β2, σ
2
1, σ

2
2).

2. (Expectation) Calculate the expected value of the log likelihood function for the con-

ditional distribution of the missing data, Q(Θ; Θ̂(j)) = E(`0(Θ′;T )|Z, Θ̂(j)), using the

most current estimate of the parameters, Θ̂j−1. In order to find Q in this specific con-

text, the first step is to find the likelihood. Because ∆ is an indicator, we can rewrite

Equation 3.1 in this equivalent way

f(y|Θ) = f1(y)∆f2(y)(1−∆).

Also, recall

f1(y) = (2πσ2
1)−1/2exp

(
− 1

2σ2
1

(y − xβ1)′(y − xβ1)

)
,

and similarly,

f2(y) = (2πσ2
2)−1/2exp

(
− 1

2σ2
2

(y − xβ2)′(y − xβ2)

)
.

From the properties of conditional probability, the joint distribution is given by f(y,∆|Θ) =

f(y|∆,Θ)f(∆|Θ). Substituting in the Bernoulli density function for f(∆), the likeli-

hood becomes

L(y,∆|Θ) ∝
n∏
i=1

f1(yi)
∆if2(yi)

1−∆iπ∆i(1− π)1−∆i .

Let ∆a be a diagonal matrix so that the iith element is ∆i, and let ∆b be a diagonal

matrix so that the iith element is 1−∆i. Inserting f1(y) and f2(y), the likelihood can
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be written as:

L(Θ|y,∆) = πtr(∆a)(1− π)tr(∆b)
exp

(
−1
2σ2

1
(yi −Xβ1)′∆a(yi −Xβ1)

)
(2πσ2

1)tr(∆a)/2
×

exp
(
−1
2σ2

2
(yi −Xβ2)′∆b(yi −Xβ2)

)
(2πσ2

2)tr(∆b)/2
.

The next step to find Q is to find the log likelihood:

`(Θ|y) = tr(∆a)log(π) + tr(∆b)log(1− π) +(
−1

2σ2
1

(yi −Xβ1)′∆a(yi −Xβ1)

)
+(

−1

2σ2
2

(yi −Xβ2)′∆b(yi −Xβ2)

)
−

tr(∆a)log(2πσ2
1)/2− tr(∆b)log(2πσ2

2)/2.

Finally, the expected value of the log likelihood is computed, leaving:

Q = E[`(Θ; y,∆)|Θ̂j] = E [tr(∆a)log(π) + tr(∆b)log(1− π)+(
−1

2σ2
1

(yi −Xβ1)′∆a(yi −Xβ1)

)
+(

−1

2σ2
2

(yi −Xβ2)′∆b(yi −Xβ2)

)
−

tr(∆a)log(2πσ2
1)/2− tr(∆b)log(2πσ2

2)/2 ]

= log(π)E[tr(∆a)] + log(1− π)E[tr(∆b)] +(
−1

2σ2
1

(yi −Xβ1)′E[∆a](yi −Xβ1)

)
+(

−1

2σ2
2

(yi −Xβ2)′E[∆b](yi −Xβ2)

)
+

log(2πσ2
1)E[tr(∆a)]/2 + log(2πσ2

2)E[tr(∆b)]/2.

Since ∆i is unobservable, E(∆i) = γi is estimated using the following function:

γi =
π̂(j−1)f

(j−i)
1 (yi)

(1− π̂(j−1))f
(j−i)
2 (yi) + π̂(j−1)f

(j−i)
1 (yi)

,
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and is updated at each iteration for updated values of the parameters. Note that

this estimation would be difficult if the likelihood did not contain linear functions of

∆. γi is the probability that ∆i = 1, or the probability that yi is from the expressed

distribution given that the maximum likelihood estimates for the parameters are set

at the most recent value in the algorithm.

3. (Maximization) In the maximization step, the maximum likelihood estimates for Θ are

updated using the current value of γi. The maximum likelihood estimates for Θ are

derived below. Recall:

`(Θ|y) = tr(∆a)log(π) + tr(∆b)log(1− π) +(
−1

2σ2
1

(yi −Xβ1)′∆a(yi −Xβ1)

)
+(

−1

2σ2
2

(yi −Xβ2)′∆b(yi −Xβ2)

)
−

tr(∆a)log(2πσ2
1))/2− tr(∆b)log(2πσ2

2)/2.

The partial derivative is derived and maximized for each parameter. The maximum

likelihood estimate for π is performed first:

δ`

δπ
=

tr(∆a)

π
− tr(∆b)

1− π
δ`

δπ
=

tr(∆a)

π
− n− tr(∆a)

1− π

0 =
tr(∆a)

π̂
− n− tr(∆a)

1− π̂

⇒ π̂ =

∑
∆a

n
.
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Next, the maximum likelihood estimate for β1 is found:

δ`

δβ1

=
δ

δβ1

(y − xβ1)′∆a(y − xβ1)

=
δ

δβ1

(y′∆ay − β′1x′∆ay − y′∆axβ1 + β′1x
′∆axβ1)

= −2x′∆ay + 2x′∆axβ1

0 = −2x′∆ay + 2x′∆axβ̂1

⇒ x′∆ay = x′∆axβ̂1

⇒ β̂1 = (x′∆ax)−1x′∆ay.

Similarly, β̂2 = (x′∆bx)−1x′∆by. Next, the maximum likelihood estimate for σ2
1 derived.

δ`

δσ2
1

=
(y − xβ1)′∆a(y − xβ1)

2σ4
1

+
−tr(∆a)

σ2
1

0 =
(y − xβ̂1)′∆a(y − xβ̂1)

2σ̂4
1

=
tr(∆a)

σ̂2
1

⇒ σ̂2
1 =

(y − xβ̂1)′∆a(y − xβ̂1)

tr(∆a)
,

and similarly, σ̂2
2 = (y−xβ̂2)′∆b(y−xβ̂2)

tr(∆b)
.

The expectation and maximization step are repeated until the parameter estimates converge.

MMAX outputs probability of expression, γi, for each gene. This summarization of the data

is critical for the next step of the analysis.

Model Validation

In order to test the performance of MMAX, it was compared to Barcoding (Zilliox and

Irizarry 2007) and Afffymetrix’s Mas5 (Hubbell et al. 2002) using a data set from Affymetrix

where the true expression was known, making it comparable to a simulation study. When

compared to other established methods, Affymetrix’s PMA calls and Barcoding, MMAX

performed similarly, if not better, at determining the probability of expression.

The data utilized for this comparison are from the Human Genome U133 array, one of

two data sets in Affymetrix’s Latin Square Experiment for Expression Algorithm Assessment.
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As the title implies, this data set will allow us to assess the performance of the algorithm

since the true expression values are known. According to their website, affymetrix.com, the

data set has 3 replicates for 14 hybridizations of 42 spiked transcripts that range from 0.125

picoMolars (pM) to 512 pM. Only the values with a concentration of 0.125 pM to 32 pM

will be utilized. In this situation, genes with a concentration above 32 pM did not provide

additional information about the performance abilities of the three methods considered. We

would expect to see a gene considered expressed once there is any concentration of RNA.

However, it would be useful to know which genes have a higher concentration than others

because it allows us a more accurate comparison between levels: if a gene has a concentration

of 32 pM, it would be more similar to a gene with 24 pM concentration than a 0.125 pM

concentration, even though technically both are expressed ; we would consider a gene with

a concentration of 32 pM to be more expressed than a gene with 0.125 pM. Retaining the

quantitative expression about how much a gene is expressed is the ideal result.

All three methods were applied to the data set mentioned above to find the probability

of expression for each. The probability of expression for a given gene using Barcoding is either

1 or 0 based on the findings of Zilliox and Irizarry (2007). For Mas5, the mas5 package in R

was utilized. The package outputs the call, either present, marginal, or absent, for each gene.

Then, the probabilities were assigned: 1 to present, 0.5 to marginal, and 0 to absent. It is

important to note that the Mas5 method is not typically extended to include the probability

of expression. The third method, MMAX, outputs the probability of expression. These

values are presented in Figure 3.1 and Table 3.1. Overall, MMAX performs better than

Mas5 and Barcoding at detecting the increase in the concentration. While Barcoding is

more accurate in the lowest values, it does not perform well in the higher concentrations. It

is not able to detect the 16 pM and 4 pM concentration even though it detects the 8 pM

concentration. Mas5 detects the presence of the concentration well, but is not sensitive to

the increase: the probability of expression is 1 from 2 pM to 32 pM. In general, MMAX

performs as well as, if not better, than both Barcoding and Mas5. Additionally, MMAX
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preserves the quantitative information in the different concentrations, which is advantageous.

Rather than lose information by reducing the gene expression to binary values, this method

allows us to retain the information that a gene with a higher concentration is more highly

expressed than a gene with a much lower concentration.
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Figure 3.1: This figure shows the probability of expression for the three methods using the

Affymetrix Latin Square data. MMAX performs as well, if not better than both methods.

MMAX also retains the quantitative information regarding the level of expression for each

gene.
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Table 3.1: This table contains a summary of the probability of expression computed for the

three methods. MMAX gradually increases to 1, which is the desired outcome. Barcoding

performs poorly: at 4 pM and 16 pM it does not detect any gene expression. Mas5 does

increase but not as steadily as MMAX, losing some of the information about the level of

expression.

Average Probability of Expression

Concentration (pm) MMAX Barcode PMA

0 0.23 0.00 0.00

0.125 0.19 0.00 0.00

0.25 0.26 0.00 0.33

0.5 0.15 0.00 0.33

1 0.29 0.00 0.72

2 0.43 0.33 1.00

4 0.43 0.00 1.00

8 0.69 0.67 1.00

16 0.75 0.00 1.00

32 0.87 1.00 1.00

Now that the method is shown to perform comparably to other methods and arguably

better than Barcoding, we can proceed with the analysis. The next step is to use the

probabilities that are output from MMAX to find a fingerprint or signature of a single active

pathway.

3.2 Calculating the Universal Probability of Expression Code

Now that the probability of expression has been obtained for each gene, the next step is to

characterize the active pathway by using a small subset (200) of the genes, which is a genetic
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signature for a active pathway. We will call this characterization the Universal Probability

of Expression Code (UPC). The UPC method is detailed below as well as the results for

when it was applied to the active RAS pathway. Note that the justification for selecting 200

genes comes from Sjoblom et al. (2006) and Wood et al. (2007), where they show it is better

to use a collection of genes rather than a few genes.

1. The gene probability of expression is calculated for both the active pathway (γij) and

control cells (δij) using MMAX. Note that j indicates the sample and i indicates the

gene.

2. The z-statistic is computed to see if the the control and active pathway are different.

More formally, we are testing to see if pcontrol = pactivepathway, for each gene. The p-

values are then ranked from lowest to highest and any p-value less than 1e − 10 is

considered significant.

3. Those 200 genes with significant p-values that have the largest absolute difference,

ai = |δ̄i. − γ̄i.|, are selected, where δ̄i. is the average of the probability of expression

for the control samples and γ̄i. is the average probability of expression for the active

pathway samples.

4. After the genes are selected, the last step in computing the UPC is to take the average

probability of expression, γ̄i., for each selected gene. This results in a vector of 200

average probabilities, the UPC.

The justification for the third step comes from the central limit theorem: the av-

erage pathway, γ̄ij ∼ N(pγ,
pγ(1−pγ)

n
). Similarly, the average control is distributed, δ̄ij ∼

N(pδ,
pδ(1−pδ)

n
). We are testing the hypothesis:

H0 : pγ − pδ = 0. (3.2)
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It can be shown that the distribution of pγ − pδ ∼ N(0, pγ(1−pγ)

n1
+ pδ(1−pδ)

n2
). And,

because we are using an approximation of the variance, the tn1+n2−2 distribution will be

utilized. We will select the genes with the largest difference between the control and the

pathway, which correspond to the smallest p-values.

The UPC method was applied to a published dataset (GEO accession number GSE3151)

containing h133+ microarrays for 10 samples of active RAS pathway and 10 control cells

(Bild et al. 2006). The analysis is shown, step by step:

1. The gene probability of expression is calculated for both the active pathway (γij) and

control cells (δij): The heatmap (Figure 3.2) shows the genes from the active RAS and

control samples; there are clear differences in the probability of expression for the two

groups. For some genes there is a clear separation: when there is a high probability of

expression (red) for control samples, there is a corresponding low expression (yellow)

for the active RAS samples.
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Figure 3.2: The probability of expression was computed for the genes in 10 RAS samples and

10 control samples. This heatmap shows the probability of expression for a random collection

of 1000 genes. It is clear that some genes are vey different between the two groups, while

other genes are more similar.

2. The z-statistic is computed to see if the the control and active pathway are different.

The p-values are then ranked from lowest to highest.: The density of the significant

absolute differences (p-value < 10e− 12)is shown in Figure 3.3. The cutoff for the 200
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significant genes with the largest average difference is approximately 0.8794, indicated

by the vertical line.
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Figure 3.3: This plot contains the density of the absolute average differences for significant

genes. We selected the 200 largest differences, the values where ai > 0.8794.

3. The genes corresponding to the 200 largest ai are selected as the genes for the UPC : A

portion of the genes selected for the RAS UPC are shown in Figure 3.4. The differences

between the control cells and RAS pathway are evident.
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Figure 3.4: The genes selected for the RAS UPC are shown. There are clear differences in

the control samples and the RAS samples.

4. After the genes are selected, the last step in computing the UPC is to take the average

probability of expression for γkj: The UPC was calculated for the RAS pathway using

the average of the 10 RAS samples. A portion of the UPC is shown in Table 3.2, and

the complete UPC is contained in the Appendix A.
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Table 3.2: A portion of the RAS UPC is shown below.

n Gene Probe ID Probability of Expression

1 ZNF555 1553286 at#56 57 0.08

2 SRRM2 1554671 a at#1098 635 0.12

3 SRRM2 1554671 a at#358 217 0.09

4 SRRM2 1554671 a at#732 245 0.08

5 ST6GAL2 1555123 at#362 635 0.08

6 RAP1A 1555339 at#219 599 0.05

7 RAP1A 1555339 at#835 173 0.10

8 RAP1A 1555340 x at#218 599 0.06

We now have the UPC for the active RAS pathway: a fingerprint for the active RAS pathway.

The process has been illustrated for the RAS pathway but can be applied to any other active

pathway for which there are control and active samples.

To summarize, the UPC is a profile or fingerprint of an active pathway, containing

200 genes and the probability that that gene is expressed. All that remains is to project the

UPC into cancer samples to see if it is present.

3.3 Measuring Pathway Projection

The previous section detailed the method of obtaining the profile of the active pathway; we

now want to compare or project that active pathway to an individual cancer sample to see if

they are similar or different, which will indicate wheter that the active pathway is present or

not present, respectively. In this section we will illustrate a straightforward way to do this.

Note it is not a very rigorous or developed method, but it illustrates the utility of the UPC.

In fact, a very interesting extension to this project would be to develop and compare more
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methodological approaches, particularly in the classification step. The steps for projecting

the UPC into a given cancer sample are as follows:

1. Find probability of expression for the genes corresponding to the UPC using MMAX

(Note, all of the genes will be used in the computation of the probabilities in MMAX,

but only the 200 probabilities of the genes in the UPC are used to compute if the RAS

is present).

2. Reduce the UPC and cancer probabilities to binary values.

3. Find the percent of concordant genes between the RAS UPC and the cancer sample.

We will treat this as the probability that the pathway is present in a given cell.

4. Classify each sample in regards to the RAS UPC based on the probability computed

above. The classification method was determined arbitrarily, based on two cutoffs and

creating three classification groups: active, marginal, and inactive.

This method was applied to 51 lung cancer samples on h133+ arrays used by Bild

et al. (2006) (GEO accession number GSE3141). The RNA was extracted from frozen tissue

primary lung samples and was put onto expression arrays, one array for every sample. In this

particular data set, there are samples from squamous cell lung carcinoma and adenocarci-

noma. Adenocarcinoma is more likely to contain an activated RAS pathway, while squamous

cell carcinoma is not likely to have an activated RAS pathway. We know the subtypes of

the samples, which will give us some indication of the accuracy of our method: we expect to

see more squamous cell carcinoma samples classified as having an active RAS pathway, and

similarly, we expect more adenocarcinoma cells to be classified as having an inactive RAS

pathway.

The probabilities of expression for the 51 lung cancer samples are displayed in Figure

3.5. There was a clear separation in these particular samples, hence an arbitrary classification

scheme was selected: samples with a probability higher than 65% were classified as containing
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an active RAS pathway (ON), samples with a probability lower than 45% had an inactive

RAS pathway (OFF), and the samples whose probabilities fell in between are marginal

(MAR).

The classification breakdown is contained in Table 3.3. According to this classification

scheme, 45 samples contain an active RAS pathway, 4 did not, and 2 were marginal. A

classification heatmap was also created (Figure 3.6). The heatmap uses the gene probabilities

rather than the binary values, highlighting and confirming our results. We see that the

samples classified as ON more closely resemble the RAS UPC, and those classified as OFF

more closely resemble the control (NORM).
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Figure 3.5: Cancer samples were classified based on their probability of concordant genes

with the UPC. 45 samples had an active RAS pathway, 2 were marginal, and 4 had an

inactive RAS pathway.
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Figure 3.6: Cancer samples were classified based on their probability of concordant genes
with the UPC. There is a clear separation in the samples that were classified as having an
active RAS (ON) and those inactive samples (OFF).

Table 3.3: This table contains the classification of the 51 lung cancer samples. The majority

of the samples have an active RAS pathway.

RAS status Frequency

Active (p > 0.65) 45

Moderate (0.45 < p < 0.65) 2

Inactive (p < 0.45) 4
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One difficultly with this portion of the analysis is that we do not know if our classi-

fication method is accurate since we do not know the truth about the cancer samples. We

do, however, know the subtype of cancer for each sample, which provides some insight on

how our method is performing. Recall that adenocarcinoma generally has an activated RAS

pathway, and squamous cell carcinoma generally has an inactive RAS pathway. The clas-

sification was compared to the subtypes of the cancer (Table 3.4). Overall, both subtypes

have a majority of samples with an active RAS pathway. This is what we expected for

adenocarcinoma, but we were expecting a larger portion of adenocarcinoma cells to contain

an inactive RAS. While we cannot make any quantitative statements about our method’s

performance, it does not seem to be able to distinguish the adenocarcinoma samples that

contain an inactive RAS pathway.

Table 3.4: This table contains the classification of the 51 lung cancer samples compared to the

known cancer subtypes. More squamous cell carcinoma samples were classified as active than

we might expect. The classification, however, meets our expectation for adenoccarcinoma.

RAS status Adenocarcinoma Squamous Cell Carcinoma

Active (p > 0.65) 25 20

Moderate (0.45 < p < 0.65) 1 1

Inactive (p < 0.45) 1 3

According to Goodsell (1999), the active RAS pathway is present in 35% of lung can-

cers. Using our arbitrary classification scheme, 88% of lung cancer samples were determined

to have an active RAS pathway. This result is not consistent with the literature. While this

result was slightly disappointing, it is not surprising; since we are dealing with cancer, there

are many things wrong in the cell, which would confound our results. More specifically, there

could be another deregulated pathway that causes genes to behave differently. This would
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cause the behavior of one single pathway to be confounded with the other pathways in the

cell. With this in mind, the next logical development for this method would be to extend it

to multiple pathways, unconfounding the results.

3.4 Conclusion

The goal of this project was to present a method that would quantify an active pathway

then project it into a cancer sample to see if it is present. MMAX normalization outputs the

probability a gene is expressed; and since it performed comparably to other existing methods,

we then proceeded to use those probabilities from control and active pathway samples to

determine the profile or UPC of the gene. Lastly, the UPC was projected into the cancer

samples to see if the active RAS pathway was present. We determined that 45 of 51 samples

had an active RAS pathway present. While the pathway projection was not as successful as

we expected it to be, we did find that MMAX performs as well if not better than existing

methods. Ultimately, this method has the potential to inform the treatment decisions made

by researchers and doctors, increasing the recovery rate and decreasing recovery time.
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appendix a

UPC FOR DISRUPTED RAS PATHWAY

Table A.1: The RAS UPC is shown below.

n Gene Probe ID Probability of Expression

1 ZNF555 1553286 at#56 57 0.08

2 SRRM2 1554671 a at#1098 635 0.12

3 SRRM2 1554671 a at#358 217 0.09

4 SRRM2 1554671 a at#732 245 0.08

5 ST6GAL2 1555123 at#362 635 0.08

6 RAP1A 1555339 at#219 599 0.05

7 RAP1A 1555339 at#835 173 0.10

8 RAP1A 1555340 x at#218 599 0.06

9 RAP1A 1555340 x at#770 41 0.09

10 RAP1A 1555340 x at#836 173 0.10

11 STH 1555752 at#593 699 0.06

12 LZTS2 1555881 s at#1109 1101 0.10

13 C17orf64 1555985 at#479 133 0.08

14 FN1 1558199 at#592 721 0.11

15 TMTC3 1560017 at#1132 795 0.09

16 TMTC3 1560017 at#705 1025 0.08

17 LOC283856 1560707 at#165 723 0.09
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18 LOC100287432 1561229 at#151 23 1.00

19 DNAH3 1563290 at#624 501 0.06

20 MARCKSL1 200644 at#638 779 0.10

21 CAT 201432 at#941 633 0.09

22 ALDH3A2 202053 s at#262 1097 0.10

23 ALDH3A2 202054 s at#902 257 0.09

24 MGP 202291 s at#773 173 0.10

25 TNFSF10 202688 at#760 381 0.09

26 TNFSF10 202688 at#78 57 0.10

27 GSTA4 202967 at#214 667 0.08

28 BCL6 203140 at#1007 215 0.12

29 MMD 203414 at#241 775 0.09

30 SKP2 203625 x at#1056 197 0.10

31 SKP2 203625 x at#464 137 0.11

32 SKP2 203625 x at#583 261 0.09

33 APOBEC3G 204205 at#339 215 0.10

34 GAS1 204457 s at#1077 927 0.09

35 GAS1 204457 s at#459 217 0.07

36 GAS1 204457 s at#52 539 0.09

37 GAS1 204457 s at#588 55 0.08

38 GAS1 204457 s at#60 553 0.08

39 CROT 204573 at#351 723 0.09

40 MAPK4 204708 at#9 191 0.11

41 MDM4 205655 at#631 91 0.06

42 SLC7A4 205864 at#445 491 0.09

43 IL3RA 206148 at#326 949 0.10
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44 CDSN 206193 s at#458 459 0.10

45 OVOL1 206604 at#1103 197 0.12

46 DDX17 208151 x at#1109 103 0.09

47 HIST1H2BI 208523 x at#50 691 0.11

48 HIST1H2BE 208527 x at#1143 519 0.09

49 HIST1H2BE 208527 x at#842 639 0.06

50 HIST1H1E 208553 at#1156 521 0.11

51 HIST1H1E 208553 at#230 485 0.12

52 HIST1H1E 208553 at#506 411 0.08

53 H2BFS 208579 x at#1142 519 0.09

54 H2BFS 208579 x at#843 639 0.06

55 DDX17 208719 s at#1063 133 0.10

56 DDX17 208719 s at#1110 103 0.09

57 DDX17 208719 s at#97 199 0.08

58 FOS 209189 at#473 1003 1.00

59 FOS 209189 at#837 781 1.00

60 SYT11 209198 s at#738 569 0.06

61 PEG3 209242 at#366 993 0.11

62 MAF 209348 s at#86 751 0.08

63 HMGN3 209377 s at#636 691 0.11

64 SF3A2 209381 x at#1097 1139 0.09

65 GATA3 209604 s at#695 859 0.08

66 KLK2 209854 s at#1151 433 0.10

67 HIST1H2BD 209911 x at#1144 519 0.08

68 KCNH2 210036 s at#1061 361 0.10

69 SLC12A5 210040 at#493 605 0.08
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70 BMPR2 210214 s at#321 293 0.08

71 BMPR2 210214 s at#760 917 0.10

72 RUNX1 210365 at#743 11 0.09

73 MCAM 211042 x at#936 461 0.09

74 RUNX1 211181 x at#5 655 0.09

75 RUNX1 211182 x at#3 655 0.09

76 HAP1 211222 s at#1078 985 0.07

77 CASP1 211366 x at#462 561 0.09

78 RUNX1 211620 x at#2 655 0.11

79 TEX261 212084 at#874 575 0.09

80 MTUS1 212093 s at#1011 1041 0.09

81 MTUS1 212093 s at#256 1109 0.09

82 PHLDB1 212134 at#1015 721 0.12

83 LIMCH1 212327 at#143 747 0.09

84 CXCR7 212977 at#1107 931 0.11

85 CXCR7 212977 at#421 107 0.11

86 SOSTDC1 213456 at#234 731 0.08

87 HNRNPH1 213472 at#783 699 0.09

88 PPBP 214146 s at#1114 575 1.00

89 PPBP 214146 s at#417 837 1.00

90 PPBP 214146 s at#570 11 1.00

91 PPBP 214146 s at#94 391 0.99

92 RAP2A 214487 s at#413 181 1.00

93 ZNF33B 215022 x at#232 1033 0.10

94 RUNDC3B 215321 at#272 217 0.09

95 ZNF277 215887 at#340 299 0.08
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96 PDGFA 216867 s at#1081 339 0.12

97 PDGFA 216867 s at#540 733 0.08

98 PDGFA 216867 s at#811 983 0.08

99 RUNX1 217263 x at#4 655 0.08

100 IGHG1 217369 at#1109 375 0.11

101 IGHG1 217369 at#118 177 0.09

102 TNS3 217853 at#597 315 0.08

103 HERC6 219352 at#938 265 0.08

104 HPSE 219403 s at#998 293 1.00

105 ADAMTS5 219935 at#469 1049 0.09

106 ASB7 219996 at#486 773 0.10

107 IGKC 221651 x at#246 385 0.07

108 IGKC 221671 x at#245 385 0.06

109 WDR59 221981 s at#131 977 0.10

110 HIST1H2BD 222067 x at#1141 519 0.09

111 BBS2 223227 at#802 367 0.10

112 CCDC8 223495 at#646 777 0.09

113 PXMP4 224210 s at#336 849 0.05

114 RNF17 224384 s at#552 1013 0.11

115 CXXC5 224516 s at#1030 257 0.10

116 IGKC 224795 x at#244 385 0.06

117 MYLK 224823 at#318 689 0.09

118 APCDD1 225016 at#760 741 0.09

119 KIAA1370 225327 at#272 591 0.09

120 FBXO32 225803 at#183 1127 0.08

121 TP53INP1 225912 at#594 27 0.10
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122 C17orf89 225966 at#357 419 0.08

123 TTC8 226120 at#543 109 0.11

124 HSPB6 226304 at#507 1065 0.11

125 LRIG3 226908 at#14 201 0.08

126 ZNF503 227195 at#7 721 0.11

127 EPHA4 227449 at#259 579 0.05

128 EPHA4 227449 at#676 639 0.09

129 NFYA 228433 at#185 269 0.09

130 SPHKAP 228509 at#144 683 0.08

131 LOC100292443 228526 at#885 709 0.11

132 LFNG 228762 at#838 777 0.08

133 C3orf38 229174 at#87 159 0.10

134 S1PR5 230464 at#50 639 0.06

135 C4orf22 231565 at#912 535 0.97

136 LOC203274 232034 at#978 507 0.11

137 MBNL2 232138 at#728 215 0.11

138 DNHD1 232240 at#4 451 0.10

139 DUSP27 232252 at#1069 1079 0.08

140 DIRAS1 232854 at#689 621 1.00

141 KIAA0182 232988 at#876 899 0.10

142 SLC4A9 233183 at#662 759 0.98

143 CDS2 233630 at#927 201 0.08

144 LAMA3 234608 at#4 893 1.00

145 STAG3L1 235263 at#876 773 0.09

146 GSTA4 235405 at#45 549 0.07

147 RNF144B 235549 at#1066 551 0.06
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148 TMEM20 236219 at#633 737 0.05

149 NFATC4 236270 at#571 541 0.10

150 VGLL2 236352 at#254 159 0.11

151 DTWD1 236649 at#90 1083 0.09

152 OTX1 238839 at#589 301 0.09

153 ENAM 240586 at#505 285 0.07

154 CCNL1 241495 at#292 713 0.07

155 CCNL1 241495 at#456 109 0.07

156 CCNL1 241495 at#4 233 0.08

157 COPS7B 243628 at#102 781 0.06

158 XIST 243712 at#196 975 0.11

159 XIST 243712 at#325 945 0.09

160 SYNE2 243841 at#1130 285 0.08

161 LCP2 244556 at#842 93 0.10

162 IGLON5 244694 at#49 215 0.09

163 LOC100130502 244744 at#488 761 0.08

164 HBEGF 38037 at#985 73 1.00
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appendix b

DOCUMENTED CODE

B.1 Code for MMAX

EM Algorithm Implementation

#####################################################

######################### Introduction ##################

#####################################################

#This purpose of this code is to normalize data in a 2-comp mixture

#model fit for each GC group

(MMAX without the model).

#This code assumes that both components are normally distributed,

#and utilizes the EM algorithm

#(pg.238 of Elements of Statistical Learning, Data Mining, Inference

#and Prediction by Hastie, etc.)

#to estimate the parameters.

#There are two steps. 1. Parameter estimation, and 2. Normalization.

#Each step will be performed for each GC group using a loop, as

#mentioned above.

######################################################

####### Step 1: Parameter Estimation using EM Algorithm ########

######################################################
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#Note that this function will estimate parameters for 1 GC group.

#It is designed to repeat for each GC group,

#nested inside OneChannelNormalize.

EM.GC <- function(dataset,pihat) #need data and initial estimate

#for pihat.

The default for pihat is 0.5, and the support is [0,1].

{

results <- rep(NA,5)

#EM Algorithm

#Step 1: Initial Values

m1 <- summary(dataset)[2] #initial mean for ’bkgrnd’ is the 25th %ile

m2 <- summary(dataset)[4] #initial mean for ’b + e’ is the 75th %ile

s1 <- var(dataset)/2 #initial variance estimate for

’background’ distribution is half of the sample variance

s2 <- var(dataset)/2 #initial variance estimate for

’background + expressed’ distribution is half of the sample variance.

pi <- pihat #Initial value for pi, proportion of values from the

#’background + expressed’ distribution.

pi.old <- 1

while(abs(pi-pi.old) > tol)

{

#Step 2: Expectation

gam <- pi*dnorm(dataset,m2,sqrt(s2))/( (1-pi)*

dnorm(dataset,m1,sqrt(s1)) + pi*dnorm(dataset,m2,sqrt(s2)) )
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#Step 3: Maximization

m1 <- sum((1-gam)*dataset)/sum(1-gam)

m2 <- sum(gam*dataset)/sum(gam)

s1 <- sum((1-gam)*(dataset-m1)^2)/sum(1-gam)

s2 <- sum(gam*(dataset-m2)^2)/sum(1-gam)

pi.old <- pi

pi <- sum(gam/length(dataset))

}

results <- c(m1,m2,s1,s2,pi) #Note, this outputs variance estimates,

not standard deviation estimation

names(results) <- c("Mu 1","Mu 2","Sigma^2 1","Sigma^2 2","Pi")

return(results)

}

#Testing EM.GC function

#Data is simulated from 2 separate distributions

y1 <- rnorm(50,15,1)

y2 <- rnorm(50,5,1)

#Set tolerance

tol <- 0.001

#Data is combined, and

EM.GC(c(y1,y2),.6) #Works, although with only 50 observations,

#the variances are much greater than expected.

#More data points to see if it gets better estimates:

y1 <- rnorm(5000,15,1)

y2 <- rnorm(5000,5,1)

#Set tolerance
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tol <- 0.001

#Data is combined, and

EM.GC(c(y1,y2),.6) #Works, although with only 50 observations,

#the variances are much greater than expected.

#I’ll want a function that reads in the data from the Microarray File.

#Need a sample file- It will need to return the values as well

#as the GCcount for the sequence. If I’m given a DNA sequence

find.gc <- function(seq)

{

a <- unlist(strsplit(seq,NULL))

count <- sum(a==’C’|a==’G’)

return(count=count)

}

seq <- as.character(data[,cols[3]])

GC <- sapply(seq,gc)

for(i in 1:nobs)

{

GCCount[i,1] <- as.numeric(GC[[i]][1])

}

gcCount <- find.gc(seq)

OneChannelNormalize <- function(data,GCCount=NULL,useGC=FALSE,

minGC=5,pihat=.5,tol=.0001)

{

if(useGC==FALSE)
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{

y <- data

params <- EM.GC(y,pihat,tol)

print(params)

if(params[1] < params[2])

{

mu <- params[1] #Smaller mean is the background mean

sigma2 <- params[3] #Sigma squared for background mean

}

else

{

mu <- params[2] #Smaller mean is the background mean

sigma2 <- params[4] #Sigma squared for background mean

}

normalize <- (y - mu)/sqrt(sigma2)

norm <- normalize

}

else

{

norm <- rep(NA,length=length(data))

##This establishes which groups will be the "GC groups"

GCCount <- as.numeric(GCCount) #Allows String Input

GCgroups <- NULL

for(i in sort(unique(GCCount)))

{

if(sum(GCCount==i) >= minGC)

{
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GCgroups <- c(GCgroups,i)

}

}

##This groups GC count into the groups that have more than the min.

for(i in sort(unique(GCCount)))

{

if(sum(GCCount==i) < minGC )

{

GCCount[GCCount==i] <- GCgroups[order(abs(GCgroups-i))[1]]

#Puts into

#the closest group (groups down for ties)

}

}

##This is the actual normalization method

for (i in GCgroups)

{

y <- data[GCCount==i]

params <- EM.GC(y,pihat,tol)

#print(params)

if(params[1] < params[2])

{

mu <- params[1] #Smaller mean is the background mean

sigma2 <- params[3] #Sigma squared for background mean

}

else
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{

mu <- params[2] #Smaller mean is the background mean

sigma2 <- params[4] #Sigma squared for background mean

}

normalize <- (y - mu)/sqrt(sigma2)

norm[GCCount==i] <- normalize

}

}

return(norm)

}

#Testing Normalization Function:

y1 <- rnorm(50,15,1)

y2 <- rnorm(50,5,1)

gclist <- rep(c(1,2,3,4),25)

gclist3 <- c(rep(1,2),rep(c(2,3),48))

test1 <- OneChannelNormalize(c(y1,y2)) #Tests the function with no GC

test2 <- OneChannelNormalize(c(y1,y2),gclist,useGC=TRUE)

#Tests the function with GC, large GC groups

test3 <- OneChannelNormalize(c(y1,y2),gclist3,useGC=TRUE)

#Tests the function with GC, large GC groups

plot(density(test1))

plot(density(test2))

plot(density(test3))

plot(density(c(y1,y2)))
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Model Validation

# Get the necessary packages

source("http://bioconductor.org/biocLite.R")

biocLite("affy")

library(’affy’)

setwd(’/Users/michelle/Desktop/Research/Barcode/AffyLatin’)

#Read in the data: pass in a cel file

data1 <- ReadAffy("12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL")

#mas5 normalization: pass in the "ReadAffy" object

calls <- mas5calls(data1)

write.table(calls,’ATTEMPT.txt’)

calls <- t(read.table(’ATTEMPT.txt’,header=T))

head(calls)

abar <- (calls==’M’)*.5 + (calls == "P")*1

colnames(abar) <- c("A1","A2","A3")

################

setwd("Users/michelle/Desktop/Research/Barcode/AffyLatin")

obar <- read.table("completeresultsfull.txt")

rownames(obar) <- obar[,1]

obar <- as.matrix(obar[,-1])

colnames(obar) <- c("A1","A2","A3")

60



www.manaraa.com

xbar1 <- read.table("bar1.txt")

xbar2 <- read.table("bar2.txt")

xbar3 <- read.table("bar3.txt")

ubar <- cbind(xbar1[,-1],xbar2[,-1],xbar3[,-1])

rownames(ubar) <- xbar1[,1]

obar[1:20,] #Our method

ubar[1:20,] #Barcoding

mobar <- apply(obar,1,mean)

mobar <- mobar[1:22215]

mubar <- apply(ubar,1,mean)

sum(mubar==1) ##Very strong agreement with expressed genes

sum(mubar >0 & mubar <1)

sum(mubar==0)

mabar <- apply(abar,1,mean)

sum(mubar) ##Includes fraction values

sum(mabar)

sum(mobar>.9419)

cutoff <- .9419

ourbar <- mobar #Round probabilities?

for(i in 1:length(mobar))
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{

if(mobar[i]>cutoff)

{

ourbar[i] <- 1

}

else

{

ourbar[i] <- 0

}

}

sum(ourbar)

x <- cbind(mubar,ourbar)

j <- sum(x[,1]==1 & x[,2]==1)

j/1338 #27.5% agreement (stringent cutoff)

y <- cbind(ubar,mobar)

design <- rep(c(1:10),each=3)

design2 <- rep(c(1:10),each=9)

design3 <- rep(rep(c(1:10),each=3),3)

designvals <- c(0,.125,.25,.5,1,2,4,8,16,32)

rows <- c(which(rownames(ubar)=="203508_at"),

which(rownames(ubar)=="204563_at"),
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which(rownames(ubar)=="204513_s_at"),

which(rownames(ubar)=="204205_at"),

which(rownames(ubar)=="204959_at"),

which(rownames(ubar)=="207655_s_at"),

which(rownames(ubar)=="204836_at"),

which(rownames(ubar)=="205291_at"),

which(rownames(ubar)=="209795_at"),

which(rownames(ubar)=="207777_s_at"),

which(rownames(ubar)=="204912_at"),

which(rownames(ubar)=="205569_at"),

which(rownames(ubar)=="207160_at"),

which(rownames(ubar)=="205692_s_at"),

which(rownames(ubar)=="212827_at"),

which(rownames(ubar)=="209606_at"),

which(rownames(ubar)=="205267_at"),

which(rownames(ubar)=="204417_at"),

which(rownames(ubar)=="205398_s_at"),

which(rownames(ubar)=="209734_at"),

which(rownames(ubar)=="209354_at"),

which(rownames(ubar)=="206060_s_at"),

which(rownames(ubar)=="205790_at"),

which(rownames(ubar)=="200665_s_at"),

which(rownames(ubar)=="207641_at"),

which(rownames(ubar)=="207540_s_at"),

which(rownames(ubar)=="204430_s_at"),

which(rownames(ubar)=="203471_s_at"),

which(rownames(ubar)=="204951_at"),

63



www.manaraa.com

which(rownames(ubar)=="207968_s_at"))

###################################################

### chunk number 4: MMAX boxplot

###################################################

#Our barcode

boxplot(mobar[rows]~design,col="green",xaxt=’n’,ylab="Probability

of Expression",xlab="Spike-in concentration (picomolar)")

axis(1,c(1:10),c(0,".125",".25",".5",1,2,4,8,16,32))

title("MMAX")

#abline(-.1,1/9,lwd="3")

mmax <- matrix(mobar[rows],ncol=3,byrow=T)

apply(mmax,1,mean)

###################################################

### chunk number 5: Barcodeboxplot

###################################################

#Their barcode

boxplot(mubar[rows]~design,col="blue",xaxt=’n’,ylab="Probability

of Expression",

xlab="Spike-in concentration (picomolar)")

axis(1,c(1:10),c(0,".125",".25",".5",1,2,4,8,16,32))

title("Barcode")

#abline(-.1,1/9,lwd="3")

brcode <- matrix(mubar[rows],ncol=3,byrow=T)

apply(brcode,1,mean)
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###################################################

### chunk number 7: Affy Plot

###################################################

boxplot(mabar[rows]~design,col="red",xaxt=’n’,ylab="Probability

of Expression",

xlab="Spike-in concentration (picomolar)")

axis(1,c(1:10),c(0,".125",".25",".5",1,2,4,8,16,32))

title("Mas5")

abline(-.1,1/9,lwd="3")

laffy <- matrix(mabar[rows],ncol=3,byrow=T)

apply(laffy,1,mean)

cbind(apply(mmax,1,mean),apply(brcode,1,mean),apply(laffy,1,mean))

###################################################

### chunk number 7: Comparison Box Plot

###################################################

boxplot(mabar[rows]~design,col="red",xaxt=’n’,ylab="Probability

of Expression",

xlab="Spike-in concentration (picomolar)")

axis(1,c(1:10),c(0,".125",".25",".5",1,2,4,8,16,32))

title("Comparison of Methods for Spike-In Concentration")

boxplot(mubar[rows]~design,col="blue",add=T,xaxt=’n’)

boxplot(mobar[rows]~design,col="green",xaxt=’n’,add=T)

legend(.3,.9,lty=1,col=c("green","blue","red","black"),c

("MMAX","Barcode","Affy","Truth"))
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abline(-1,1/10,lwd="3")

#For just barcode and our method:

boxplot(mubar[rows]~design,col="blue",xaxt=’n’,ylab="Probability

of Expression",xlab="Spike-in concentration (picomolar)")

axis(1,c(1:10),c(0,".125",".25",".5",1,2,4,8,16,32))

title("Comparison of Methods for Spike-In Concentration")

boxplot(mobar[rows]~design,col="green",xaxt=’n’,add=T)

legend(1.5,.9,lty=1,col=c("green","blue"),c("MMAX","Barcode"))

B.2 Code for UPC calculation

setwd("/Users/michelle/Desktop/Project Data")

##################################################

############ Step 1: Process and Normalize the data ######

##################################################

#This step was performed using the MMAX program

##########################################################

##### Step 2: Calculating the UPC for the disrupted RAS pathway ######

#########################################################

#1. Calculate probability of expression for pathway & control

#This was done using the MMAX program.

#Heatmap of the probability of expression for RAS and control

#(Note: Only a random sample of 1000 genes were chosen)

set.seed(12345)
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control.file <- NULL

ras.file <- NULL

bigdata <- matrix(NA,ncol=20,nrow=604258)

for(i in 1:10)

{

control.file[i] <- paste("0159_62",28+i,"_h133+_GFP-",i,"

_cel.norm.txt",sep="")

ras.file[i] <- paste("0159_67",42+i,"_h133+_RAS-",i,"

_cel.norm.txt",sep="")

bigdata[,i] <- read.table(control.file[i],comment.char="")[,3]

#Control 1-10

bigdata[,i+10] <- read.table(ras.file[i],comment.char="")[,3]

# RAS 11-20

}

step1 <- sample(1:604258,1000)

random.genes <- bigdata[step1,]

colnames(random.genes) <- c("NORM1","NORM2","NORM3","NORM4",

"NORM5","NORM6","NORM7","NORM8","NORM9","NORM10",

"RAS1","RAS2","RAS3","RAS4",

"RAS5","RAS6","RAS7","RAS8","RAS9","RAS10")

heatmap(random.genes,labRow=NA,ylab=NA,main="Probability of

Expression for RAS and Control Samples")

#2. Significant genes are selected

X <- matrix(c(rep(1,10),rep(0,20),rep(1,10)),ncol=2)

cont <- c(1,-1)

#Approach 1: Using p-values
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denom <- matrix(NA,nrow(bigdata),1)

tstat <- matrix(NA,nrow(bigdata),1)

diff <- matrix(NA,nrow(bigdata),1)

for(i in 1:nrow(bigdata))

{

y <- bigdata[i,]

b <- solve(t(X)%*%X)%*%t(X)%*%y

diff[i,] <- (b[1,]-b[2,])

s2 <- t(y-X%*%b)%*%(y-X%*%b)/(ncol(bigdata)-2)

denom[i,] <- s2[1,1]*cont%*%solve(t(X)%*%X)%*%cont

tstat[i,] <- cont%*%b/sqrt(denom[i,1])

}

pval <- 2*(1-pt(abs(tstat),ncol(bigdata)-2))

sort(abs(diff),decreasing=T)[201]

significants <- bigdata[((pval<=0.00000000001 &

abs(diff) > 0.8793205)),]

dim(significants)

heatmap(significants)

#absdiff.pdf

hist(abs(diff[pval<=0.00000000001]),

main="Density of Absolute Differences

for Significant Genes",ylab=’Density’,lwd=2,

xlab="Average Absolute Difference",breaks=100)

abline(v=sort(abs(diff[pval<=0.00000000001]),

decreasing=T)[201],lwd=2,col="blue")

hist(sort(abs(diff[pval<=0.00000000001]),
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decreasing=TRUE)[1:195],col="blue",add=T)

#3. Selecting the 200 genes with the largest absolute difference.

significants <- bigdata[((pval<=0.00000000001 &

abs(diff) > 0.8793205)),]

sig.n <- c(which(pval<=0.00000000001 &

abs(diff) > 0.8793205))

probes <- read.table(control.file[1],comment.char="")[,1]

results <- cbind(probes,diff,bigdata)

sig.probe <- results[sig.n,]

rownames(sig.probe) <- sig.probe[,1]

#upc1.pdf

heatmap(sig.probe[,-c(1:2)],labRow=NA,ylab=NA,

main="Genes Selected for UPC")

#4. Heatmap of ’Average’ pathway:

upc <- rowMeans(bigdata[sig.n,11:20])

NORM <- rowMeans(bigdata[sig.n,1:10])

#heatmap(cbind(upc,bigdata[sig.n,11:20],NORM,bigdata[sig.n,1:10])

,Colv=NA,Rowv=NA)

heatmap(cbind(upc,bigdata[sig.n,11:20],bigdata[sig.n,1:10]))

#Output the significant probes easily

probes[sig.n]

B.3 Code for pathway projection

TRAIN <- cancer.files <- c("0176_6642_h133+_98-691.norm.txt",

"0176_6602_h133+_98-711.norm.txt",
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"0176_6621_h133+_98-771.norm.txt",

"0176_6639_h133+_98-1063.norm.txt",

"0176_6613_h133+_97-587.norm.txt",

"0176_6601_h133+_98-320.norm.txt",

"0176_6606_h133+_97-1026.norm.txt",

"0176_6607_h133+_98-933.norm.txt")

colnames(vals.train) <- c(rep("A",4),rep("S",4))

vals.train <- matrix(NA,nrow=200,ncol=8)

for(i in 1:8)

{

vals.train[,i] <- read.table(TRAIN[i],comment.char="")[sig.n,3]

}

heatmap(cbind(upc,vals.train))

# Projecting it into the cancer sample

TEST <- cancer.files <- c("0176_6608_h133+_96-475.norm.txt",

"0176_6610_h133+_99-671.norm.txt","0176_6611_h133+_98-683.norm.txt",

"0176_6612_h133+_97-403.norm.txt","0176_6598_h133+_10-00.norm.txt",

"0176_6625_h133+_00-011.norm.txt","0176_6632_h133+_00-315.norm.txt",

"0176_6614_h133+_98-543.norm.txt","0176_6616_h133+_99-692.norm.txt",

"0176_6617_h133+_98-657.norm.txt","0176_6618_h133+_99-440.norm.txt",

"0176_6619_h133+_99-728.norm.txt","0176_6620_h133+_98-1146.norm.txt",

"0176_6622_h133+_98-1216.norm.txt","0176_6623_h133+_98-1014.norm.txt",

"0176_6624_h133+_99-830.norm.txt","0176_6626_h133+_98-152.norm.txt",

"0176_6627_h133+_98-1293.norm.txt","0176_6628_h133+_98-1296.norm.txt",

"0176_6489_h133+_97-0949.norm.txt","0176_6629_h133+_98-375.norm.txt",
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"0176_6491_h133+_98-0292.norm.txt","0176_6630_h133+_98-967.norm.txt",

"0176_6496_h133+_98-0679.norm.txt","0176_6631_h133+_99-1017.norm.txt",

"0176_6499_h133+_99-0077.norm.txt","0176_6500_h133+_99-0055.norm.txt",

"0176_6633_h133+_00-151.norm.txt","0176_6594_h133+_98-985.norm.txt",

"0176_6634_h133+_99-1067.norm.txt","0176_6595_h133+_98-821.norm.txt",

"0176_6635_h133+_99-301.norm.txt","0176_6596_h133+_98-853.norm.txt",

"0176_6636_h133+_99-137.norm.txt","0176_6597_h133+_99-927.norm.txt",

"0176_6640_h133+_98-343.norm.txt","0176_6599_h133+_98-506.norm.txt",

"0176_6641_h133+_98-186.norm.txt","0176_6600_h133+_99-1033.norm.txt",

"0176_6643_h133+_98-723.norm.txt","0176_6645_h133+_98-197.norm.txt",

"0176_6603_h133+_98-401.norm.txt","0176_6604_h133+_96-3.norm.txt")

vals.test <- matrix(NA,nrow=200,ncol=43)

for(i in 1:43)

{

vals.test[,i] <- read.table(TEST[i],comment.char="")[sig.n,3]

}

colnames(vals.test) <- c("S","A","A","S","S","S","S","A","S",

"A","A","S","A","A","A","S","A","S","A","S","S","S","A","A","A",

"S","A","S","A","S","A","S","S","A","S","A","S","A","A","A","A",

"S","A")

heatmap(cbind(vals.test,vals.train,upc,NORM))

cancer.upc <- matrix(NA,nrow=200,ncol=51)

cancer.upc <- cbind(vals.test,vals.train)
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colnames(cancer.upc) <- c(colnames(vals.test),colnames(vals.train))

percent <- NULL

for(i in 1:ncol(cancer.upc))

{

percent[i] <- mean(round(cancer.upc[,i],0)==round(upc,0))

}

UPC <- as.matrix(upc)

colnames(UPC) <- ("UPC")

on <- cancer.upc[,which(percent > .65)]

colnames(on) <- rep("ON",ncol(on))

off <- cancer.upc[,which(percent < .45)]

colnames(off) <- rep("OFF",ncol(off))

marg <- cancer.upc[,which(percent > .45 & percent < .65)]

colnames(marg) <- rep("MAR",ncol(marg))

heatmap(cbind(UPC,on,marg,off),

main="Classification Heatmap",Rowv=NA)

heatmap(cbind(UPC,cancer.upc),

main="Classification Heatmap")

cbind(percent>.65,percent < .45,colnames(cancer.upc))

sum(percent>.65&colnames(cancer.upc)=="A") #25

sum(percent>.65&colnames(cancer.upc)=="S") #20

sum(percent<.45 &colnames(cancer.upc)=="A") #1

sum(percent<.45 &colnames(cancer.upc)=="S") #3

plot(rep(1,51),percent,ylab="Percent Concordance with UPC",xlab=""

,axes=F,ylim=c(.2,.9))
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axis(side=2,at=(seq(.2,1.0,by=.1)),labels=seq(.2,1.0,by=.1))

abline(h=.45,col=’red’)

abline(h=.65,col=’red’)

title("Classification of Lung Cancer Samples")

text(1.25,.8,"Activated RAS")

text(1.25,.6,"Moderate")

text(1.25,.4,"Inactive RAS")
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